

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Redetermination of 1,3-diammonio-1,2,3-trideoxy-c*is*-inositol dichloride

Christian Neis, Günter J. Merten, Philipp Altenhofer and Kaspar Hegetschweiler*

Fachrichtung Chemie, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany

Correspondence e-mail: hegetschweiler@mx.uni-saarland.de

Received 13 March 2012; accepted 21 March 2012

Key indicators: single-crystal X-ray study; T = 130 K; mean σ (C–C) = 0.002 Å; R factor = 0.017; wR factor = 0.047; data-to-parameter ratio = 15.4.

The crystal structure of the title compound, $C_6H_{16}N_2O_3^{2+}$. 2Cl⁻, has been reported previously by Palm [Acta Cryst. (1967), 22, 209–216] from Weisenberg camera data, with R1 =10.5%, isotropic refinement of non-H atoms and H atoms not located. We remeasured a data set of the title compound and present a more precise structure determination. The asymmetric unit contains two unique 1,3-diammonio-1,2,3-trideoxy-cis-inositol cations and four Cl⁻ counter-ions. The cyclohexane rings of both inositol cations adopt chair conformations with two axial hydroxy groups. An extended network of hydrogen bonds is formed. The four chloride counter ions are hydrogen bonded to the hydroxy and ammonium groups of the cations by N-H···Cl and O-H···Cl interactions. The cations are aligned into wavy layers by cation...cation interactions of the form N-H...O(ax), $N-H\cdots O(eq)$ and $O(ax)-H\cdots O(eq)$. Intramolecular hydrogen bonding between the axial hydroxy groups is, however, not observed.

Related literature

An earlier, less accurate structure determination of the title compound was performed by Palm (1967). The crystal structure of 1,3-diammonio-1,2,3-trideoxy-*cis*-inositol sulfate has been reported by Neis *et al.* (2012). The importance of intramolecular hydrogen bonding in 1,3,5-trisubstituted cyclohexane derivatives has been described by Gencheva *et al.* (2000), Saaidi *et al.* (2008) and Neis *et al.* (2010), and the implication of increased 1,3-diaxial repulsion on the conformation of a cyclohexane *ring* has been discussed by Fritsche-Lang *et al.* (1985), Kramer *et al.* (1998) and Kuppert *et al.* (2006). For the synthesis, see: Merten *et al.* (2012). For the treatment of hydrogen atoms in *SHELXL*, see: Müller *et al.* (2006).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_6H_{16}N_2O_3}^{2+}{\cdot}{\rm 2Cl^-}\\ M_r=235.11\\ {\rm Monoclinic}, P2_1\\ a=7.7899~(4)~{\rm A}\\ b=10.1254~(5)~{\rm A}\\ c=13.0136~(7)~{\rm A}\\ \beta=91.156~(2)^\circ \end{array}$

Data collection

Bruker–Nonius X8 APEX KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2010) T_{min} = 0.838, T_{max} = 0.914

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.017$	
$wR(F^2) = 0.047$	
S = 1.06	
4459 reflections	
289 parameters	
19 restraints	

 $V = 1026.25 (9) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.61 \text{ mm}^{-1}$ T = 130 K $0.30 \times 0.22 \times 0.15 \text{ mm}$

16242 measured reflections 4459 independent reflections 4429 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.27 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.15 \text{ e } \text{ Å}^{-3}$ Absolute structure: Flack (1983), 2093 Friedel pairs Flack parameter: 0.01 (3)

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N18-H18A···Cl4	0.89(1)	2.28 (1)	3.1411 (11)	163 (2)
$N18 - H18B \cdot \cdot \cdot Cl1^{i}$	0.90(1)	2.37 (2)	3.2646 (12)	177 (2)
N18−H18C···Cl3 ⁱⁱ	0.91 (1)	2.26(1)	3.1634 (11)	175 (2)
$N22 - H22C \cdot \cdot \cdot Cl4^{iii}$	0.87(1)	2.21 (1)	3.0761 (11)	172 (2)
$N22 - H22A \cdots Cl1$	0.88 (2)	2.28 (2)	3.1466 (12)	168 (2)
$N22 - H22B \cdots Cl3$	0.87 (1)	2.32 (2)	3.1518 (12)	162 (2)
O19−H19· · · O9 ^{iv}	0.81(2)	1.91 (2)	2.7168 (13)	172 (2)
$O20 - H20 \cdot \cdot \cdot Cl2^{v}$	0.88(2)	2.48 (2)	3.2220 (10)	143 (2)
$O21 - H21 \cdots Cl2$	0.83 (1)	2.39 (2)	3.2096 (10)	174 (2)
$N7 - H7C \cdot \cdot \cdot O20^{vi}$	0.89 (1)	2.05 (2)	2.8560 (15)	151 (2)
$N7 - H7B \cdot \cdot \cdot O19$	0.85 (1)	2.11 (2)	2.9404 (14)	164 (2)
$N7 - H7A \cdots Cl3$	0.89(1)	2.70 (2)	3.4038 (11)	138 (1)
O8−H8···Cl2 ^{vi}	0.84 (1)	2.29 (2)	3.1256 (10)	175 (2)
O9−H9···Cl1 ^{iv}	0.80(2)	2.27 (2)	3.0144 (10)	156 (2)
O10−H10···Cl4 ^{vii}	0.85 (2)	2.14 (2)	2.9889 (10)	177 (2)
$N11 - H11C \cdot \cdot \cdot Cl2^{v}$	0.89 (2)	2.37 (2)	3.2132 (12)	159 (2)
$N11 - H11B \cdots Cl1^{v}$	0.86 (1)	2.51 (2)	3.3007 (11)	154 (2)
$N11 - H11A \cdots Cl2$	0.90 (2)	2.61 (2)	3.4618 (13)	158 (2)

Symmetry observed (i) $x_1 + 1, z_2, (ii) - x + 1, y + \frac{1}{2}, -z_2, (iii) - x + 1, y - \frac{1}{2}, -z_2, (iv) - x + 1, y - \frac{1}{2}, -z + 1; (v) x - 1, y, z; (vi) - x + 1, y - \frac{1}{2}, -z + 1.$

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2010); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2011); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors thank Dr Volker Huch (Universität des Saarlandes) for the collection of the data set.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5213).

References

- Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Fritsche-Lang, W., Wilharm, P., Hädicke, E., Fritz, H. & Prinzbach, H. (1985). *Chem. Ber.* **118**, 2044–2078.
- Gencheva, G., Bontchev, P. R., Sander, J. & Hegetschweiler, K. (2000). Z. Kristallogr. New Cryst. Struct. 215, 183–185.

- Kramer, A., Alberto, R., Egli, A., Novak-Hofer, I., Hegetschweiler, K., Abram, U., Bernhardt, P. V. & Schubiger, P. A. (1998). *Bioconjugate Chem.* 9, 691–702.
- Kuppert, D., Comba, P. & Hegetschweiler, K. (2006). Eur. J. Inorg. Chem. pp. 2792–2807.
- Merten, G. J., Neis, C., Stucky, S., Huch, V., Rentschler, E., Natter, H., Hempelmann, R., Stöwe, K. & Hegetschweiler, K. (2012). Eur. J. Inorg. Chem. pp. 31–35.
- Müller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). Crystal Structure Refinement – A Crystallographer's Guide to SHELXL. Oxford University Press.
- Neis, C., Merten, G. J. & Hegetschweiler, K. (2012). Acta Cryst. E68, o1425-01426.
- Neis, C., Petry, D., Demangeon, A., Morgenstern, B., Kuppert, D., Huppert, J., Stucky, S. & Hegetschweiler, K. (2010). *Inorg. Chem.* 49, 10092–10107.
- Palm, J. H. (1967). Acta Cryst. 22, 209-216.
- Saaidi, P.-L., Chazal, P.-E., Maurin, P., Jeanneau, E. & Hasserodt, J. (2008). *Acta Cryst.* E64, 0803–0804.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o1411-o1412 [doi:10.1107/S1600536812012366]

Redetermination of 1,3-diammonio-1,2,3-trideoxy-cis-inositol dichloride

Christian Neis, Günter J. Merten, Philipp Altenhofer and Kaspar Hegetschweiler

Comment

The title compound contains two independent 1,3-diammonio-1,2,3-trideoxy-cis-inositol dications (denoted as cation 1 and cation 2). As already noted by Palm (1967), the cyclohexane rings of both cations adopt a chair conformation, having one hydroxy and two ammonium groups in equatorial and two hydroxy groups in axial position. The puckering parameters of the two cyclohexane rings are: Q = 0.59 Å, θ = 4.3 °, φ = 337.8 ° (cation 1); Q = 0.58 Å, θ = 5.0 °, φ = 87.0 ^o (cation 2). The cations are aligned to wavy layers, oriented parallel to the *ab* plane, by direct cation 1...cation 2 interactions of the form N—H···O(ax), N—H···O(eq) and O(ax)—H···O(eq). In these layers, each cation of one type is interlinked with three cations of the other. In addition, cation 1 ... cation 1 interactions are formed by weak C-H...O hydrogen bonds between the axial oxygen atoms and two axial C—H hydrogen atoms of a neighbour (O…C distances: 3.277 and 3.215 Å, O…H distances: 2.470 and 2.485 Å, O…H—C angles 137 and 129 °). Cation 2…cation 2 hydrogen bonding is not observed. The four chloride counter ions are also involved in the extended hydrogen bonding network. Considering Cl...H distances up to 2.7 Å, Cl1 has a coordination number of four (irregular geometry). The coordination number of Cl2 is 5 and its geometry lies closer to a tetragonal pyramid than to a trigonal bipyramid ($\tau = 1/4$). Cl3 and Cl4 have coordination numbers of three. The geometry is again irregular. All O-H and N-H groups in the two cations act as hydrogen donors, however, not all of the axial hydroxy groups act as hydrogen acceptors (if the abovementioned, weak C—H···O contacts are disregarded). This observation is in agreement with the well established concept that axial substituents are sterically more encumbered. In particular, it is of interest that no intramolecular O-H···O hydrogen bonding has been found for the axial hydroxy groups, although the corresponding O.O.O separations fall in the almost ideal range of 2.893 - 2.906 Å. For corresponding structures with three axial hydroxy or amino groups in a syn-1,3,5triaxial arrangement, a different behaviour has frequently been noted (Gencheva et al., 2000; Saaidi et al., 2008; Neis et al., 2010). If a third syn-axial substituent is present, it appears that formation of such intramolecular hydrogen bonds is sometimes even a prerequisite for the adoption of a stable cyclohexane chair. Disabling of hydrogen bonding (for instance by protonation of an amino group or by converting it into an amide) enforces the structure to escape the increasing repulsion by switching to a twisted boat conformation (Fritsche-Lang et al., 1985; Kramer et al., 1998; Kuppert et al., 2006). It is thus noteworthy that in both cations of the title compound, such intramolecular O-H···O stabilisation is not required. Also in a corresponding sulphate salt (Neis et al., 2012) no intramolecular hydrogen bonding between the two axial hydroxy groups has been found.

Experimental

The title compound was prepared following the protocol given by Merten *et al.* (2012). ¹H-NMR (D₂O, pH 1.0): δ (p.p.m.) = 4.17 (2*H*), 3.74 (1*H*), 3.56 (2*H*), 2.12 (2*H*). ¹³C-NMR (D₂O, pH 1.0): δ (p.p.m.) = 25.2, 43.0, 63.7, 68.2. Single crystals were grown from an aqueous solution by slow evaporation at 298 K.

Refinement

All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms were treated as recommended by Müller *et al.* (2006): A riding model was used for C-bonded hydrogen atoms. The positional parameters of the O- and N-bonded hydrogen atoms were refined using isotropic displacement parameters which were set to $1.5 \times U_{eq}$ of the pivot atom. In addition, restraints of 0.84 and 0.88 Å were used for the O—H and N—H distances, respectively.

Computing details

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2010); data reduction: *SAINT* (Bruker, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2011); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

Molecular structure of the title compound. The asymmetric unit comprising two crystallographically independent cations and four crystallographically independent chloride counter ions is shown. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Section of the puckered layer, which is formed by hydrogen bonding between cation 1 and cation 2 entities (ball and stick model).

1,3-diammonio-1,2,3-trideoxy-cis-inositol dichloride

Crystal data	
$C_6H_{16}N_2O_3^{2+}\cdot 2Cl^-$	V = 1026.25 (9) Å ³
$M_r = 235.11$	Z = 4
Monoclinic, <i>P</i> 2 ₁	F(000) = 496
Hall symbol: P 2yb	$D_{\rm x} = 1.522 {\rm ~Mg} {\rm ~m}^{-3}$
a = 7.7899 (4) Å	Mo K α radiation, $\lambda = 0.71073$ Å
b = 10.1254 (5) Å	Cell parameters from 9336 reflections
c = 13.0136 (7) Å	$\theta = 2.6 - 40.5^{\circ}$
$\beta = 91.156 \ (2)^{\circ}$	$\mu = 0.61 \text{ mm}^{-1}$
	-

T = 130 KPrism, colorless

Data collection

Bruker–Nonius X8 APEX KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
$T_{\min} = 0.838, T_{\max} = 0.914$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.017$	H atoms treated by a mixture of independent
$wR(F^2) = 0.047$	and constrained refinement
S = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0292P)^2 + 0.1788P]$
4459 reflections	where $P = (F_o^2 + 2F_c^2)/3$
289 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
19 restraints	$\Delta ho_{ m max} = 0.27 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ Å}^{-3}$
direct methods	Absolute structure: Flack (1983), 2093 Friedel
Secondary atom site location: difference Fourier	pairs
map	Flack parameter: 0.01 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $0.30 \times 0.22 \times 0.15 \text{ mm}$

 $\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$

 $R_{\rm int} = 0.017$

 $h = -9 \rightarrow 9$ $k = -12 \rightarrow 12$ $l = -16 \rightarrow 16$

16242 measured reflections 4459 independent reflections 4429 reflections with $I > 2\sigma(I)$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.65695 (15)	0.78053 (13)	0.49259 (9)	0.0116 (2)	
H1A	0.7440	0.8297	0.4535	0.014*	
H1B	0.6742	0.6850	0.4805	0.014*	
C2	0.47789 (15)	0.82069 (11)	0.45618 (9)	0.0109 (2)	
H2	0.4629	0.9177	0.4672	0.013*	
C3	0.33980 (16)	0.74645 (11)	0.51435 (9)	0.0117 (2)	
H3	0.2245	0.7822	0.4936	0.014*	
C4	0.36884 (16)	0.76840 (13)	0.63009 (9)	0.0135 (2)	
H4	0.3478	0.8638	0.6453	0.016*	
C5	0.54882 (17)	0.73308 (12)	0.66995 (9)	0.0141 (2)	
H5	0.5605	0.7597	0.7438	0.017*	
C6	0.67808 (15)	0.81082 (12)	0.60699 (9)	0.0129 (2)	
H6	0.6605	0.9075	0.6185	0.015*	

N18	0.72743 (14)	1.01783 (11)	0.05624 (8)	0.0149 (2)	
H18A	0.6277 (19)	1.0191 (18)	0.0889 (12)	0.022*	
H18B	0.789 (2)	1.0895 (16)	0.0746 (14)	0.022*	
H18C	0.706 (2)	1.0188 (19)	-0.0129 (10)	0.022*	
N22	0.73895 (14)	0.53468 (11)	0.10007 (8)	0.0154 (2)	
H22C	0.706 (2)	0.5268 (19)	0.0357 (11)	0.023*	
H22A	0.801 (2)	0.4651 (17)	0.1183 (13)	0.023*	
H22B	0.646 (2)	0.5385 (19)	0.1356 (13)	0.023*	
O19	0.75839 (12)	0.93190 (9)	0.26803 (7)	0.01429 (18)	
H19	0.751 (2)	1.0080 (15)	0.2863 (13)	0.021*	
O20	1.09187 (12)	0.81557 (10)	0.32436 (7)	0.0206 (2)	
H20	1.028 (2)	0.8689 (19)	0.3606 (14)	0.031*	
O21	0.78841 (12)	0.64823 (10)	0.28780 (7)	0.01674 (19)	
H21	0.837 (2)	0.6185 (18)	0.3397 (12)	0.025*	
N7	0.45629 (14)	0.79085 (11)	0.34387 (8)	0.0132 (2)	
H7C	0.3542 (19)	0.8197 (17)	0.3215 (13)	0.020*	
H7B	0.537 (2)	0.8271 (17)	0.3103 (13)	0.020*	
H7A	0.462 (2)	0.7050 (14)	0.3315 (13)	0.020*	
C13	0.83453 (16)	0.90192 (12)	0.08871 (9)	0.0140 (2)	
H13	0.9361	0.8970	0.0431	0.017*	
O8	0.34834 (12)	0.61091 (9)	0.48626 (7)	0.01400 (17)	
H8	0.2471 (19)	0.5838 (18)	0.4902 (14)	0.021*	
C14	0.89926 (16)	0.92022 (12)	0.19938 (9)	0.0131 (2)	
H14	0.9704	1.0023	0.2037	0.016*	
O9	0.24058 (12)	0.69200 (10)	0.68068 (7)	0.01881 (19)	
H9	0.213 (2)	0.7301 (18)	0.7312 (13)	0.028*	
C15	1.01194 (16)	0.80171 (13)	0.22624 (9)	0.0152 (2)	
H15	1.1064	0.8011	0.1754	0.018*	
O10	0.58596 (14)	0.59647 (10)	0.66089 (7)	0.0204 (2)	
H10	0.601 (2)	0.5671 (19)	0.7219 (12)	0.031*	
C16	0.92115 (16)	0.66793 (12)	0.21605 (9)	0.0134 (2)	
H16	1.0084	0.5963	0.2255	0.016*	
N11	0.85723 (14)	0.77409 (13)	0.63986 (8)	0.0182 (2)	
H11C	0.931 (2)	0.8269 (18)	0.6089 (14)	0.027*	
H11B	0.872 (2)	0.780 (2)	0.7055 (11)	0.027*	
H11A	0.883 (2)	0.6931 (16)	0.6164 (14)	0.027*	
C17	0.84314 (16)	0.65722 (12)	0.10753 (9)	0.0132 (2)	
H17	0.9392	0.6500	0.0580	0.016*	
C12	0.73148 (16)	0.77507 (13)	0.07590 (9)	0.0137 (2)	
H12A	0.6929	0.7652	0.0033	0.016*	
H12B	0.6285	0.7786	0.1192	0.016*	
Cl1	0.95255 (4)	0.27346 (3)	0.13119 (2)	0.01574 (7)	
C12	0.96850 (3)	0.51134 (3)	0.48456 (2)	0.01623 (6)	
C13	0.36075 (4)	0.53635 (3)	0.18167 (2)	0.02006 (7)	
Cl4	0.34728 (4)	0.98731 (3)	0.12868 (2)	0.02147 (7)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0106 (5)	0.0148 (6)	0.0092 (5)	-0.0009 (4)	-0.0005 (4)	0.0008 (4)

C2	0.0121 (5)	0.0109 (5)	0.0096 (5)	-0.0002 (4)	-0.0004 (4)	-0.0002 (4)
C3	0.0111 (5)	0.0103 (5)	0.0138 (5)	0.0004 (4)	0.0021 (4)	-0.0004 (4)
C4	0.0166 (6)	0.0108 (5)	0.0134 (5)	-0.0016 (4)	0.0059 (4)	-0.0001 (4)
C5	0.0203 (6)	0.0122 (5)	0.0097 (5)	-0.0014 (5)	0.0021 (4)	0.0003 (4)
C6	0.0138 (6)	0.0140 (6)	0.0107 (5)	-0.0020 (4)	-0.0015 (4)	0.0004 (4)
N18	0.0175 (5)	0.0141 (5)	0.0131 (4)	-0.0007 (4)	-0.0003 (4)	0.0020 (4)
N22	0.0177 (5)	0.0142 (5)	0.0140 (5)	0.0010 (4)	-0.0013 (4)	-0.0019 (4)
019	0.0168 (4)	0.0137 (4)	0.0125 (4)	0.0013 (3)	0.0033 (3)	-0.0020 (3)
O20	0.0189 (5)	0.0250 (5)	0.0176 (4)	0.0031 (4)	-0.0048 (4)	-0.0033 (4)
O21	0.0170 (5)	0.0219 (5)	0.0114 (4)	0.0020 (4)	0.0003 (3)	0.0017 (3)
N7	0.0133 (5)	0.0159 (5)	0.0104 (5)	-0.0016 (4)	-0.0012 (4)	0.0010 (4)
C13	0.0158 (6)	0.0136 (6)	0.0125 (5)	0.0003 (4)	0.0017 (4)	0.0005 (4)
08	0.0129 (4)	0.0115 (4)	0.0177 (4)	-0.0025 (3)	0.0029 (3)	-0.0030 (3)
C14	0.0113 (5)	0.0139 (6)	0.0140 (6)	-0.0012 (4)	0.0011 (4)	-0.0014 (4)
09	0.0214 (5)	0.0175 (5)	0.0180 (4)	-0.0036 (4)	0.0115 (4)	-0.0020 (4)
C15	0.0115 (5)	0.0173 (6)	0.0167 (6)	0.0015 (4)	-0.0028 (4)	-0.0033 (5)
O10	0.0302 (5)	0.0148 (4)	0.0162 (4)	0.0005 (4)	-0.0002 (4)	0.0018 (4)
C16	0.0128 (6)	0.0142 (6)	0.0133 (5)	0.0022 (4)	-0.0005 (4)	-0.0003 (4)
N11	0.0171 (5)	0.0222 (6)	0.0151 (5)	-0.0032 (5)	-0.0055 (4)	0.0027 (5)
C17	0.0135 (6)	0.0133 (6)	0.0127 (5)	0.0000 (4)	0.0021 (4)	-0.0020 (4)
C12	0.0166 (5)	0.0144 (6)	0.0101 (5)	0.0001 (5)	-0.0015 (4)	-0.0010 (4)
Cl1	0.01912 (14)	0.01465 (13)	0.01360 (12)	-0.00009 (11)	0.00369 (10)	0.00124 (10)
Cl2	0.01362 (13)	0.01454 (13)	0.02052 (14)	-0.00019 (10)	0.00009 (10)	0.00263 (11)
C13	0.01973 (14)	0.02535 (17)	0.01513 (13)	-0.00115 (12)	0.00145 (10)	-0.00093 (12)
Cl4	0.01848 (14)	0.03068 (18)	0.01520 (13)	-0.00287 (12)	-0.00074 (10)	0.00097 (12)

Geometric parameters (Å, °)

C1—C2	1.5195 (16)	O19—H19	0.809 (15)
C1—C6	1.5257 (15)	O20—C15	1.4163 (15)
C1—H1A	0.9900	O20—H20	0.878 (15)
C1—H1B	0.9900	O21—C16	1.4212 (15)
C2—N7	1.4987 (14)	O21—H21	0.825 (14)
C2—C3	1.5258 (16)	N7—H7C	0.890 (14)
С2—Н2	1.0000	N7—H7B	0.852 (14)
C3—O8	1.4222 (14)	N7—H7A	0.885 (14)
C3—C4	1.5347 (16)	C13—C12	1.5221 (18)
С3—Н3	1.0000	C13—C14	1.5275 (16)
C4—O9	1.4341 (14)	С13—Н13	1.0000
C4—C5	1.5275 (18)	O8—H8	0.838 (14)
C4—H4	1.0000	C14—C15	1.5232 (17)
C5—O10	1.4186 (15)	C14—H14	1.0000
C5—C6	1.5291 (16)	О9—Н9	0.796 (15)
С5—Н5	1.0000	C15—C16	1.5326 (17)
C6—N11	1.4983 (16)	C15—H15	1.0000
С6—Н6	1.0000	O10—H10	0.854 (15)
N18—C13	1.4959 (16)	C16—C17	1.5299 (16)
N18—H18A	0.893 (14)	C16—H16	1.0000
N18—H18B	0.900 (14)	N11—H11C	0.885 (15)
N18—H18C	0.911 (13)	N11—H11B	0.862 (14)

N22—C17	1.4848 (16)	N11—H11A	0.898 (15)
N22—H22C	0.874 (14)	C17—C12	1.5283 (17)
N22—H22A	0.883 (15)	С17—Н17	1.0000
N22—H22B	0.865 (14)	C12—H12A	0.9900
O19—C14	1.4339 (15)	C12—H12B	0.9900
C2—C1—C6	109.31 (10)	C2—N7—H7C	109.6 (11)
C2—C1—H1A	109.8	C2—N7—H7B	110.1 (12)
C6—C1—H1A	109.8	H7C—N7—H7B	110.5 (16)
C2—C1—H1B	109.8	C2—N7—H7A	111.7 (12)
C6—C1—H1B	109.8	H7C—N7—H7A	107.9 (17)
H1A—C1—H1B	108.3	H7B—N7—H7A	106.9 (17)
N7—C2—C1	109.54 (9)	N18—C13—C12	109.95 (10)
N7—C2—C3	108.55 (9)	N18—C13—C14	110.05 (10)
C1—C2—C3	111.43 (9)	C12—C13—C14	111.65 (10)
N7—C2—H2	109.1	N18—C13—H13	108.4
C1—C2—H2	109.1	С12—С13—Н13	108.4
С3—С2—Н2	109.1	C14—C13—H13	108.4
08—C3—C2	108.11 (9)	С3—О8—Н8	104.6 (12)
08-C3-C4	112.66 (10)	019—C14—C15	111.51 (10)
C2-C3-C4	108.91 (10)	019-014-013	110.81 (10)
08—C3—H3	109.0	C15-C14-C13	107.37 (10)
C2-C3-H3	109.0	019—C14—H14	109.0
C4-C3-H3	109.0	C15—C14—H14	109.0
09-C4-C5	111 16 (10)	C13 - C14 - H14	109.0
09-C4-C3	106 39 (10)	C4	109.0
$C_{5} - C_{4} - C_{3}$	11455(10)	020-015-014	111 69 (10)
$O_{2} C_{4} H_{4}$	108.2	020 - C15 - C16	111.05(10)
C5-C4-H4	108.2	C_{14} C_{15} C_{16}	111.00(10) 114.43(10)
$C_3 - C_4 - H_4$	108.2	020-015-H15	106.4
010 C5 C4	112 70 (10)	C_{14} C_{15} H_{15}	106.4
010 - 05 - 04	112.79(10) 108.65(10)	$C_{14} = C_{15} = H_{15}$	106.4
$C_{10} = C_{10} = C_{10}$	107.90(10)	$C_{10} - C_{13} - H_{10}$	106.7(13)
$C_{4} = C_{5} = C_{6}$	107.30 (10)	C_{3}	100.7(13) 108.41(10)
$C_{10} = C_{5} = H_{5}$	109.1	021 - 016 - 017	108.41(10)
C4-C5-H5	109.1	$C_{17} = C_{16} = C_{15}$	114.07(10) 108.45(10)
N11 C6 C1	109.1 108.07(10)	C17 - C16 - C15	108.45 (10)
N11-C6-C5	100.07(10) 100.91(10)	021 - 010 - 010	108.0
NII = CO = CS	109.81(10)	C17 - C10 - H10	108.0
	111.11 (10)	CI3-CI0-HI6	108.0
	109.5	CO-NII-HIIC	109.0(12)
	109.5	Co-NII-HIIB	111.0(13)
C_{12} N_{18} H_{18A}	109.3	HIIC—NII—HIIB	109.4 (18)
C13—N18—H18A	111.2(12)	Co-NII-HIIA	109.9 (12)
$U_{13} = W_{10} = W_{10} = W_{10}$	103.4(12) 100.1(17)	$\Pi \Pi \bigcup - \Pi \Pi = \Pi \Pi \Pi$	104.3(17)
$\Pi 10A - N 10 - \Pi 10B$	109.1 (17)	$\Pi \Pi B - \Pi \Pi - \Pi \Pi A$	112.3(18)
U13 - N18 - H18U	112.1(11) 100.2(15)	N22 - C17 - C12	109.12(10)
$\Pi 10A - N 10 - \Pi 10C$	109.2 (13)	$N_{22} - C_{17} - C_{10}$	109.03 (10)
$\Pi 10B - N10 - H10U$	109.8 (17)	$U_1 = U_1 $	113.99 (10)
U1/-N22-H22U	100.7(12)	N22	108.2

C17—N22—H22A	110.8 (12)	С12—С17—Н17	108.2
H22C—N22—H22A	109.4 (17)	С16—С17—Н17	108.2
C17—N22—H22B	112.8 (13)	C13—C12—C17	109.47 (10)
H22C—N22—H22B	106.6 (16)	C13—C12—H12A	109.8
H22A—N22—H22B	110.3 (17)	C17—C12—H12A	109.8
С14—О19—Н19	108.9 (13)	C13—C12—H12B	109.8
С15—О20—Н20	107.5 (13)	C17—C12—H12B	109.8
C16—O21—H21	105.0 (13)	H12A—C12—H12B	108.2
C6—C1—C2—N7	-179.87 (10)	N18—C13—C14—O19	59.93 (13)
C6—C1—C2—C3	-59.74 (13)	C12—C13—C14—O19	-62.45 (13)
N7—C2—C3—O8	53.24 (12)	N18—C13—C14—C15	-178.07 (10)
C1—C2—C3—O8	-67.46 (12)	C12—C13—C14—C15	59.55 (13)
N7—C2—C3—C4	175.96 (9)	O19—C14—C15—O20	-64.11 (13)
C1—C2—C3—C4	55.26 (12)	C13—C14—C15—O20	174.33 (10)
O8—C3—C4—O9	-57.58 (13)	O19—C14—C15—C16	63.16 (13)
C2—C3—C4—O9	-177.52 (9)	C13—C14—C15—C16	-58.41 (13)
O8—C3—C4—C5	65.65 (14)	O20-C15-C16-O21	61.04 (13)
C2—C3—C4—C5	-54.29 (13)	C14—C15—C16—O21	-66.54 (13)
O9—C4—C5—O10	55.85 (13)	O20-C15-C16-C17	-178.05 (10)
C3—C4—C5—O10	-64.77 (13)	C14—C15—C16—C17	54.36 (13)
O9—C4—C5—C6	175.88 (9)	O21—C16—C17—N22	-49.61 (13)
C3—C4—C5—C6	55.25 (13)	C15—C16—C17—N22	-173.95 (10)
C2-C1-C6-N11	-178.30 (10)	O21—C16—C17—C12	72.58 (13)
C2-C1-C6-C5	61.17 (13)	C15—C16—C17—C12	-51.77 (13)
O10-C5-C6-N11	-54.54 (13)	N18—C13—C12—C17	179.03 (10)
C4—C5—C6—N11	-177.14 (10)	C14—C13—C12—C17	-58.53 (13)
O10—C5—C6—C1	64.96 (13)	N22-C17-C12-C13	177.03 (10)
C4—C5—C6—C1	-57.64 (13)	C16—C17—C12—C13	54.90 (13)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	H···A	D····A	D—H···A
N18—H18A····Cl4	0.89(1)	2.28 (1)	3.1411 (11)	163 (2)
N18—H18B····Cl1 ⁱ	0.90(1)	2.37 (2)	3.2646 (12)	177 (2)
N18—H18C····Cl3 ⁱⁱ	0.91 (1)	2.26(1)	3.1634 (11)	175 (2)
N22—H22C····Cl4 ⁱⁱⁱ	0.87 (1)	2.21 (1)	3.0761 (11)	172 (2)
N22—H22A···Cl1	0.88 (2)	2.28 (2)	3.1466 (12)	168 (2)
N22—H22 <i>B</i> ···Cl3	0.87 (1)	2.32 (2)	3.1518 (12)	162 (2)
O19—H19…O9 ^{iv}	0.81 (2)	1.91 (2)	2.7168 (13)	172 (2)
O20—H20…Cl2 ^v	0.88 (2)	2.48 (2)	3.2220 (10)	143 (2)
O21—H21···Cl2	0.83 (1)	2.39 (2)	3.2096 (10)	174 (2)
N7—H7C···O20 ^{vi}	0.89(1)	2.05 (2)	2.8560 (15)	151 (2)
N7—H7 <i>B</i> ···O19	0.85 (1)	2.11 (2)	2.9404 (14)	164 (2)
N7—H7A····Cl3	0.89(1)	2.70 (2)	3.4038 (11)	138 (1)
O8—H8····Cl2 ^{vi}	0.84 (1)	2.29 (2)	3.1256 (10)	175 (2)
O9—H9····Cl1 ^{iv}	0.80 (2)	2.27 (2)	3.0144 (10)	156 (2)
O10—H10····Cl4 ^{vii}	0.85 (2)	2.14 (2)	2.9889 (10)	177 (2)
N11—H11 C ···Cl2 ^v	0.89 (2)	2.37 (2)	3.2132 (12)	159 (2)

supplementary materials

N11—H11B····Cl1 ^v	0.86 (1)	2.51 (2)	3.3007 (11)	154 (2)	
N11—H11A····Cl2	0.90 (2)	2.61 (2)	3.4618 (13)	158 (2)	

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) -*x*+1, *y*+1/2, -*z*; (iii) -*x*+1, *y*-1/2, -*z*; (iv) -*x*+1, *y*+1/2, -*z*+1; (v) -*x*+2, *y*+1/2, -*z*+1; (vi) *x*-1, *y*, *z*; (vii) -*x*+1, *y*-1/2, -*z*+1.